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A calculation method has been produced for the propagation of vibration in the
ground from a stationary oscillating load applied via a railway track structure. The
model includes the track as an in"nite layered beam structure resting on a ground
made up of in"nite parallel homogeneous elastic layers. These layers may either be
constrained at the lower interface or coupled to an elastic half-space. A similar
model, based on wave propagating "nite elements, has previously been shown to be
useful in predicting the behaviour of real soils and railway tracks, but the applica-
bility of that model was limited by long computation times. The present method is
more e$cient in calculating the responses at a large number of positions. The
development of the theory allows analysis in terms of the amplitudes of di!erent
wave types propagating along, and normal to, the track. Example calculations are
presented for a ground consisting of a layer on a half-space. By changing only the
depth of the layer, two di!erent wave propagation regimes are found, the "rst
where propagation takes place via modes of the layer and the second, where
propagation takes place via the bulk waves in the layer and the Rayleigh wave in
the substratum. Both examples show the track structure to have a strong e!ect on
the directivity and amplitude of the response of the ground surface.
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1. INTRODUCTION

Low-frequency, surface-propagating ground vibration from trains is often percep-
tible in buildings adjacent to the track. This may cause annoyance, sleep distur-
bance and concern over possible damage to the property. Surface propagating
vibration represents a signi"cant environmental impact to be taken into account in
the design of new or realigned railways. High vibration levels in the frequency range
from about 4 to 50 Hz are especially associated with the operation of heavy-
axle freight vehicles [1], however, passenger operations can also cause signi"cant
levels. Some railways have reported higher frequency vibration, associated with
0022-460X/99/310003#26 $30.00/0 ( 1999 Academic Press



4 X. SHENG E¹ A¸.
&&ground-borne noise'', to be propagated from surface railways as well as from, the
more well-known source, trains running in tunnels [1]. In this case, the frequency
range of interest is extended to about 200 Hz.

There is a clear need for numerical models in order to study the vibration
propagation from railways and to devise new means of attenuating the vibration
[2]. For this reason a number of two- and three-dimensional models have been
developed by various workers for the study of ground vibration from trains.

In 1991, Jones and Petyt proposed a model for propagation from a railway track
which used a two-dimensional representation of the ground, "rst as a half-space
[3], and later as a layer on a half-space [4]. In that work no model of the railway
track was included and the load was applied as a constant pressure amplitude
acting over a "nite width of the ground surface. The dimensionality of the model
implies a load of constant value and of in"nite length in three dimensions. These
models followed the formulation of Kausel and RoeK sset [5] in the use of exact
dynamic sti!ness matrices formulated in the frequency-wave number domain for
the layer and the half-space. By transforming the formulation for the lateral
direction of displacement into the wave number domain, the solution for propaga-
tion of waves to in"nity is obtained. Parallel layers of di!erent materials are
implemented by the discretization in the vertical direction into &layer-elements' and
assembling separate sti!ness matrices to form a matrix representing the layered
half-space.

A number of other cross-sectional (i.e. two-dimensional) models which allow
arbitrary geometry have been used in the study of train-induced ground vibration
since the work of Jones and Petyt. However, it is the interest within the present
work to follow the development of three-dimensional models so that the in#uence
of the longitudinal properties of the track structure can be taken into account.

In further work by Jones and Petyt, the dynamic sti!ness matrix approach for
the layer elements was extended to produce a three-dimensional model of the
ground as a layered medium [6, 7].

A model with an alternative formulation was used by Jones [2, 8] to produce
a three-dimensional model of the ground coupled to a layered beam structure. In
this model, instead of exact layer elements, the formulation in the wave number
domain was constructed using a "nite-element approximation for the variation of
displacement with depth. The theory for this model has not been published.
However, it followed the approach that was developed by Waas [9] and Tassoulas
and Kausel [10] in two dimensions. The three-dimensional layer elements of
references [2, 8] used cubic-polynomial shape functions rather than the linear
approximation across each layer element of the previous work.

The method of coupling a track and ground structure in references [2, 8] has
been used previously for the study of vibration in the &ground-borne noise' fre-
quency range [11] where a harmonic load at a "xed point on the track is used to
predict the e!ect of design changes to the track. In this model the ground was
represented as a three-dimensional half-space. The method of coupling of the track
to the ground is published for the "rst time in the present paper.

In reference [8], the model of the track on the layered ground was shown to be
useful in predicting the e!ects of vibration from heavy freight trains. In the same
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paper, but using a separate model of the track with multiple moving loads, the
vibration at the track was shown to be a sum of two components; the "rst generated
by the action of the passing of the deformation pattern under the multiple loads of
the train, and the second generated dynamically as the unsprung masses of the train
pass over the irregular pro"le of the track-top. For a train moving at a speed well
below the wave speeds in the ground, a comparison in reference [8] for a particular
case of predicted and measured vibration on the track showed the dynamically
induced component to be the more important above about 15 Hz. The three-
dimensional coupled track and layered ground model was then used with a forcing
function applied at each sleeper position, with a time/phase shift appropriate to the
axle spacing and speed of the train, to generate a prediction of the vibration at
a distance from the track. This was compared to a measured spectrum. Away from
the track the component generated by the movement of the loads was shown to
diminish in importance.

Takemiya [12] divides the sources of excitation of vibration from a train into
three types of force: (i) a "xed-point dynamic force due to the irregularity of the
track (this is an impulse in the time domain), (ii) a moving non-harmonic axle load,
and (iii) a moving harmonic load due to irregularities of the wheel and the e!ects of
the vibrational modes of the vehicle suspension. The solution for moving non-
oscillatory axle loads (ii) has been pursued by some workers [13, 14] having an
interest in the generation of vibration from high-speed trains that approach, and
exceed, the wave speeds in the ground. The present authors intend to present
a model which addresses the forcing type (iii) in a future paper. Takemiya shows the
need for a layered ground model and concludes that a model for the response of
a "xed-point excitation is suitable for the study of the excitation (i) and for
excitations (ii) and (iii) in the case of slow moving vehicles (i.e. well below the
ground wave speeds).

Thus references [8, 12] show that a model in which the loading has a broad band
of frequency but is stationary on the track is appropriate for use in a number of
studies of ground vibration. This is the subject of the present paper.

The importance of including the e!ects of layered ground for surface propagation
of vibration from railways was demonstrated in reference [2] in the interpretation
of experiments. A strong in#uence of the layered structure of the ground on its
propagation characteristics in the frequency range of interest and small variations
in the layer depth can lead to signi"cant di!erences in the level of transmitted
vibration. It is also shown in reference [2] that a model in which the ground is
represented as a single homogeneous elastic layer overlying a half-space can predict
measured transfer response functions of a real ground site. The importance of
modelling the ground layers is also emphasized in reference [12].

A limitation on the usefulness of the track and layered ground calculation of
references [2, 8] lay in the long computation times. This made it impossible to fully
utilize the method in the prediction scheme proposed in reference [8] as it was not
possible to generate the large number of transfer response functions from the
sleeper locations to a point on the ground.

The work reported in this paper is a continuation of that of references [6}8]. It
presents a more e$cient calculation method which can be used for loads acting
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directly on the ground, or, as shown in Figure 1, for a load acting via a coupled
track structure. Rather than use either the exact or discretized dynamic sti!ness
matrix techniques, it has been found in the present work that improved computa-
tional e$ciency for the problem can be achieved by using the #exibility matrix
approach as set out by Haskell [15] and Thomson [16]. The derivation of the
#exibility matrix for a three-dimensional ground layer is described for a Cartesian
co-ordinate system in section 2 of the paper. With some mathematical treatment,
numerical di$culties that occur in a number of the models used in references [2}8]
are avoided. An advantage of using the #exibility matrix is that all the matrices
being manipulated are of order less than or equal to 6. Axial symmetry in the wave
number domain matrix is used in the explicit analytical expression of the formulae,
resulting in further improvement of the calculation e$ciency and accuracy
(section 2.3). Section 2.4 presents the formulae for the ground response when
a harmonic load act directly on its surface.

In section 3, the coupling of the railway structure and the ground is achieved
through the calculation of a Fourier transformed loading function for the railway.
Although the equations for only one particular track construction are presented in
this paper, other track structure types can be modelled by simple modi"cations of
the track equations.
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Section 4 presents example results showing the e!ect of the track structure on the
vibration response over the surface of the ground.

2. THE FOURIER TRANSFORMED DYNAMIC FLEXIBILITY MATRIX
OF THE GROUND

2.1. DEFINITION OF THE DYNAMIC FLEXIBILITY MATRIX

The model of the track and the ground is represented in Figure 1. Shown there,
the plane Oxy stands for the surface of the ground, downward from which, the
ground consists of a number, n, of parallel layers of di!erent materials. The nth
layer overlies a half-space or a rigid foundation, which is identi"ed as &layer'
number (n#1). For the jth layer the material constants are: elastic modulus, E

j
,

Poisson's ratio, l
j
, density, o

j
, loss factor, g

j
and layer thickness, h

j
. If the (n#1)th

layer is a half-space, then its material constants are E
n`1

, l
n`1

, o
n`1

and g
n`1

.
The steady state displacement amplitudes of point (x, y, 0) on the ground surface

in x, y, z directions (z-axis is downward into the ground), due to a unit harmonic
load e*ut, where i"J!1, u is angular frequency, acting at the origin O in the
x direction, are denoted by d

11
, d

21
, d

31
respectively. When the unit harmonic load

acts at O in the y direction the displacements are denoted, d
12

, d
22

, d
32

, and d
13

,
d
23

, d
33

when the unit load is in the z direction. A matrix, [d], can be de"ned as

[d]"

d
11

d
12

d
13

d
21

d
22

d
23

d
31

d
32

d
33

"[d (x, y)] (1)

This is called the dynamic #exibility matrix of the ground or the displacement
Green's function. In general the d@s are complex.

Now suppose that, on the surface of the ground, the harmonic load distributions
p
x
(x, y)e*ut, p

y
(x, y)e*ut, p

z
(x, y)e*ut act in x, y, z directions respectively. The total

steady state vibration amplitudes of point (x, y, 0) in x, y, z directions, denoted by
u
10

(x, y), v
10

(x, y) and w
10

(x, y), respectively, are

G
u
10

(x, y)

v
10

(x, y)

w
10

(x, y) H"G
u
10

v
10

w
10
H"P

=

~=
P

=

~=

[d(x!r, y!s)] G
p
x
(r, s)

p
y
(r, s)

p
z
(r, s) Hdrds. (2)

Equation (2) is a convolution integration. Using the Fourier transform pairs

fM (b)"P
=

~=

f (x) e~*bxdx, f (x)"
1
2n P

=

~=

fM (b) e*bxdb,

fM (b, c)"P
=

~=
P

=

~=

f (x, y) e~*(bx`cy) dxdy,

f (x, y)"
1

4n2 P
=

~=
P

=

~=

fM (b, c) e*(bx`cy)dbdc (3)
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to transform equation (2) into the domain of the wave numbers b in the x direction
and c in the y direction, yields

G
uN
10

(b, c)

vN
10

(b, c)

wN
10

(b, c)H"[dM (b, c)] G
pN
x
(b, c)

pN
y
(b, c)

pN
z
(b, c)H , (4)

where uN
10

(b, c) stands for the Fourier transform of u
10

(x, y), etc. The matrix
[dM (b, c)] is called the Fourier-transformed dynamic #exibility matrix of the ground.
The derivation of an exact expression for this matrix is dealt with below in
section 2.2.

2.2. DERIVATION OF THE FOURIER-TRANSFORMED DYNAMIC FLEXIBILITY MATRIX

2.2.1. Analysis for a single ground layer

The steady state displacements in the frequency domain at the point (x, y, z
j
)

(where z
j
3(0, h

j
) ) are denoted by u

j
(x, y, z

j
) e*ut, v

j
(x, y, z

j
) e*ut, w

j
(x, y, z

j
) e*ut,

where u
j
(x, y, z

j
), v

j
(x, y, z

j
) and w

j
(x, y, z

j
) are generally complex numbers and

their Fourier transforms, i.e., in the wave number domain, are denoted by
uN
j
(b, c, z

j
), vN

j
(b, c, z

j
), wN

j
(b, c, z

j
). Put

Mu6 N
j0
"(uN

j
(b, c, 0), vN

j
(b, c, 0), wN

j
(b, c, 0) )T,

(5)
Mu6 N

j1
"(uN

j
(b, c, h

j
), vN

j
(b, c, h

j
), wN

j
(b, c, h

j
) )T,

where Mu6 N
j0

stands for the Fourier transform of the displacement vector of the top
interface of the jth layer, and Mu6 N

j1
for the Fourier transform of displacement vector

of the bottom interface of the jth layer.
The three components of stresses in x, y, z directions on the top of the jth layer

are q
xzj

(x, y, 0) e*ut, q
yzj

(x, y, 0) e*ut, q
zzj

(x, y, 0) e*ut, and those at the bottom are
q
xzj

(x, y, h
j
) e*ut, q

yzj
(x, y, h

j
) e*ut, q

zzj
(x, y, h

j
) e*ut. The Fourier transforms of the

stress vectors at the top and bottom of the jth layer are then de"ned as

Ms6 N
j0
"(qN

xzj
(b, c, 0), q6

yzj
(b, c, 0), qN

zzj
(b, c, 0))T,

(6)
Ms6 N

j1
"(qN

xzj
(b, c, h

j
), q6

yzj
(b, c, h

j
), qN

zzj
(b, c, h

j
))T,

Now, if vectors of the displacements and stresses are de"ned as

Ms6 N
j0
"G

Mu6 N
j0

Ms6 N
j0
H, Ms6 N

j1
"G

Mu6 N
j1

Ms6 N
j1
H (7)

the expressions for them can be obtained as described below.
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Since all displacements are time-harmonic, the LameH equations for jth layer can
be written as

(j
j
#k

j
)
LD

j
Lx

#k
j
$2u

j
"!o

j
u2u

j

(j
j
#k

j
)
LD

j
Ly

#k
j
$2v

j
"!o

j
u2v

j

(j
j
#k

j
)
LD

j
Lz

#k
j
$2w

j
"!o

j
u2w

j

( j"1, 2,2, n#1), (8)

where j
j
and k

j
are LameH constants of the jth layer, determined by

j
j
"

l
j
E

j
(1#ig

j
)

(1#l
j
) (1!2l

j
)
, k

j
"

E
j
(1#ig

j
)

2(1#l
j
)
, (9)

D
j
"

Lu
j

Lx
#

Lv
j

Ly
#

Lw
j

Lz
(10)

is the dilatation, and $2 the Laplace operator.
The compression and shear-wave speeds of the jth layer are now denoted by

c
j1
"S

(j
j
#2k

j
)

o
j

, c
j2
"S

k
j

o
j

( j"1, 2,2, n) (11)

respectively, and the corresponding wave numbers as

k2
j1
"

u2

c2
j1

, k2
j2
"

u2

c2
j2

( j"1, 2,2, n). (12)

By Fourier transforming equations (8) and (10), they become

(j
j
#k

j
) ibDM

j
#k

j C
d2uN

j
dz2

!(b2#c2!k2
j2

)uN
jD"0,

(j
j
#k

j
) icDM

j
#k

j C
d2vN

j
dz2

!(b2#c2!k2
j2

)vN
jD"0,

(j
j
#k

j
)
dDM

j
dz

#k
j C

d2wN
j

dz2
!(b2#c2!k2

j2
)wN

jD"0,

(13)

DM
j
"ibuN

j
#icvN

j
P

dwN
j

dz
(14)

respectively. From equations (13) and (14),

d2DM
j

dz2
!(b2#c2!k2

j1
)DM

j
"0. (15)
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Equation (15) represents the propagation of dilatational waves in the medium only.
The solution to this di!erential equation can be obtained and hence also the full set
of equations (13) which together represent the propagation of the dilatational
waves (P-waves) and also the vertically and horizontally polarized shear waves (SH
and SV waves).

The transformed stresses are determined from the Fourier transform of the
stress}strain relation of the material, i.e.,

q6
xzj

"k
j
(ibwN

j
#duN

j
/dz),

q6
yzj

"k
j
(icwN

j
#dvN

j
/dz),

q6
zzj

"(j
j
DM

j
#2k

j
dwN

j
/dz). (16)

Using these de"nitions the solutions for the Fourier-transformed displacements
and stresses at the upper and lower surfaces of a layer may be expressed in matrix
form as

Ms6 N
j0
"[A]

j0
MbN

j
, (17)

Ms6 N
j1
"eaj1hj[A]

j1
MbN

j
, (18)

where the integration constants, representing the participation of P, SV and SH
waves travelling in two directions are accounted for in the vector MbN

j
3C6. [A]

j0
,

[A]
j1

are matrices of which the detailed expressions are given in Appendix A, with

a2
j1
"b2#c2!k2

j1
, a2

j2
"b2#c2!k2

j2
( j"1, 2,2, n). (19)

From equations (17) and (18) it can be seen that a
j1

and a
j2

correspond to the
complex decay constants, or wave numbers, applying in the vertical direction.

The combination of equations (17) and (18) links the displacements and stresses
at the bottom of the layer with those at the top. This is the approach taken by
Haskell and Thomson [15, 16] to de"ne the layer &transfer' matrix

Ms6 N
j1
"eaj1hj[A]

j1
[A]~1

j0
Ms6 N

j0
. (20)

2.2.2. ¹he global analysis of the n layers

The requirement for continuity of displacements and equilibrium of stresses at
the layer interfaces is expressed by Ms6 N

11
"Ms6 N

20
, Ms6 N

21
"Ms6 N

30
,2, Ms6 N

n~1,1
"

Ms6 N
n,0

, so that

Ms6 N
n1
"ean1hn[A]

n1
[A]~1

n0
Ms6 N

n0
"ean1hn[A]

n1
[A]~1

n0
Ms6 N

n~1,1

"ean1hn ean~1,1hn~1[A]
n1

[A]~1
n0

[A]
n~1,1

[A]~1
n~1,0

Ms6 N
n~1,0

F

"e
n

&j/1aj1hj [A]
n1

[A]~1
n0

[A]
n~1,1

[A]~1
n~1,0

2 [A]
11

[A]~1
10

Ms6 N
10

.

(21)
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Following the Haskell}Thomson method, a transfer matrix can be de"ned:

[T]"C
[T]

11
[T]

12
[T]

21
[T]

22
D"[A]

n1
[A]~1

n0
[A]

n~1,1
[A]~1

n~1,0
2 [A]

11
[A]~1

10
, (22)

where [T]
11

, etc., are 3]3 matrices, and the displacements and stresses at the
lowest interface can be expressed in terms of those at the surface as

G
Mu6 N

n1
Ms6 N

n1
H"e

n

&j/1aj1hj C
[T]

11
[T]

12
[T]

21
[T]

22
DG

Mu6 N
10

Ms6 N
10
H. (23)

2.2.3. Analysis of the half-space

For the half-space, putting j"n#1 in equations (19) and (12), one can get
a
n`1,1

, a
n`1,2

, k
n`1,1

, k
n`1,2

. Putting j"n#1 in equations (5) and (6), gives
Mu6 N

n`1,0
, Ms6 N

n`1,0
, where Mu6 N

n`1,0
, Ms6 N

n`1,0
stand for the Fourier transformed

displacement vector and stress vector on the top of the half-space. The equivalent of
equations (17), for the half-space are

Mu6 N
n`1,0

"[R]MbN
n/1

,
(24)

Ms6 N
n`1,0

"[S]MbN
n`1

,

where MbN
n`1

are integration constants, [R] and [S] are 3]3 matrices of which the
detailed expressions are given in Appendix A.

Equation (24) leads to the following to express the displacements in terms of the
stresses at the upper surface of the half-space:

Mu6 N
n`1,0

"[R][S]~1Ms6 N
n`1,0

. (25)

2.2.4. Expression of [d1 (b, c)]

The #exibility matrix for the layered ground system takes di!erent forms depend-
ing on the nature of the lowest interface. Three cases are possible:

(i) A half-space substratum: Continuity of displacements and equilibrium of
stresses at the interface of the layers and the half-space requires Mu6 N

n`1,0
"

Mu6 N
n1

, Ms6 N
n`1,0

"Ms6 N
n1

, hence equation (25) becomes

Mu6 N
n1
"[R][S]~1Ms6 N

n1
. (26)

The substitution of equation (25) into equation (23) yields

Mu6 N
10
"([R][S]~1[T]

21
![T]

11
)~1 ([T]

12
![R][S]~1[T]

22
)Ms6 N

10
.
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Putting

[Q]"

Q
11

Q
12

Q
13

Q
21

Q
22

Q
23

Q
31

Q
32

Q
33

"([R][S]~1[T]
21
![T]

11
)~1

]([T]
12
![R][S]~1[T]

22
) (27)

yields the #exibility matrix of a layered ground with a half-space substratum

Mu6 N
10
"

Q
11

Q
12

Q
13

Q
21

Q
22

Q
23

Q
31

Q
32

Q
33

Ms6 N
10

. (28)

At this point the term e&n
j/1aj1hj, which will be very large when h

j
is large, disappears in

equations (27) and (28) and numerical di$culties are avoided.
(2) A rigid foundation, no half-space: In this case Mu6 N

n`1,0
"Mu6 N

n1
"0, and from

equation (23)

Mu6 N
10
"![¹]~1

11
[T]

12
Ms6 N

10
"[Q]Ms6 N

10
, (29)

where

[Q]"![T]~1
11

[T]
12

. (30)

(3) ¹he ground is represented only as a half-space: When the ground is just
a half-space (i.e. the case where n"0), equation (25) is used, i.e.,

Mu6 N
10
"[R][S]~1Ms6 N

10
"[Q]Ms6 N

10
, (31)

where

[Q]"[R][S]~1. (32)

Now comparing equations (28), (29) or (31) with equation (4), gives

[d1 (b, c)]"

!Q
11

!Q
12

!Q
13

!Q
21

!Q
22

!Q
23

!Q
31

!Q
32

!Q
33

. (33)

The minus signs in the matrix of equation (3) re#ect the fact that the positive
direction of normal stress on the surface of the ground, from the railway track, is
de"ned as opposite to the z direction.

From equation (27), the Fourier-transformed dynamic #exibility matrix may be
derived when n layers overly a half-space: from equation (30) the matrix may be
derived when n layers overly a rigid foundation; and from equation (32) the matrix
may be derived when the ground is just a half-space. These dynamic #exibility
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matrices are formulated only with [A]
j0

, [A]
j1

, and/or [R], [S]. Examination of
the expressions for these matrices, given in Appendix A, shows that no terms
involve exponents where the real part is a positive value times the layer depth,
h
j
since Re(a

j1
)'Re(a

j2
) because the dilational wave speed, c

j1
, is greater than the

shear wave speed, c
j2

, in each layer. No numerical di$culties are therefore encoun-
tered for large layer thickness.

2.3. SOME PROPERTIES OF Q
13

(b, c), Q
23

(b, c), Q
33

(b, c)

It is worth noting some properties of Q
13

(b, c), Q
23

(b, c), Q
33

(b, c) that lead to
e$ciencies in the calculation. These are
(1) Q

13
(b, c) is an odd function of b, and an even function of c.

(2) Q
23

(b, c) is an even function of b, and an odd function of c.
(3) Q

33
(b, c) is an even function of b and c.

(4) By putting b"o cos/, c"o sin/ (therefore o"Jb2#c2, /"tan~1 c/b),
then

Q
13

(b, c)"Q
23

(0, o) cos/

Q
23

(b, c)"Q
23

(0, o) sin/,

Q
33

(b, c)"Q
33

(0, o). (34)

The fourth property is very useful, because it reduces the calculation of matrix [Q]
from a plane to an axis.

In order to calculate [Q] it is "rst necessary to calculate the matrix [T], while the
calculation of [T] requires calculating the inverse of the matrices
[A]

j0
( j"1, 2,2, n) [equation (27)]. When b"0, since there are many zero

elements in the matrices [A]
j0

, the inverse of [A]
j0

can be expressed analytically
(omitted in this paper). The inverse matrix in equation (27) can also be expressed
analytically because the matrix to be inverted is of order 3.

2.4. THE GROUND RESPONSE WHEN THE LOAD ACTS DIRECTLY

ON THE SURFACE OF THE GROUND

Before considering the vibrational response of the ground to a load acting via
a track, a few simple loading cases that have been the subject of previous work
[4, 5, 7] are shown here. These cases are included brie#y as they are useful for
comparisons with the track loading case. In the following three subsections, the
method of calculation is outlined for a rectangular or circular load, and an in"nite
strip load of "nite width.

2.4.1. <ertical rectangular load

Now p
x
"0, p

y
"0 for all points and p

z
"P

0
/4ab when !a)x)a

and !b)y)b, and p
z
"0 at other points. This gives pN

x
"0, pN

y
"0,
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pN
z
"(sinba/ba) (sin cb/cb)P

0
, and substituting them into equation (4) yields,

uN
10

(b, c)"!Q
13

(b, c)
sin ba

ba
sin cb

cb
P

0
,

vN
10

(b, c)"!Q
23

(b, c)
sinba

ba
sin cb

cb
P
0
,

wN
10

(b, c)"!Q
33

(b, c)
sinba

ba
sin cb

cb
P

0
. (35)

2.4.2. <ertical circular load

In this case p
x
"0, p

y
"0 for all points and p

z
"p

0
/nR2 when x2#y2)R2, and

p
z
"0 at other points. Because the load is axisymmetric, it is convenient to use

a polar co-ordinate system. It can be shown that the displacements of the point on
the y-axis of the ground surface are as follows:

u
10

(0, y)"0,

v
10

(0, y)"!

iP
0

nR P
=

0

Q
23

(0, o)J
1
(oR)J

1
(oy) do

w
10

(0, y)"!

P
0

nR P
=

0

Q
33

(0, o)J
1
(oR)J

0
(oy) do, (36)

where J
0
(y) and J

1
(y) are Bessel functions of the "rst type and order 0 and 1.

2.4.3. <ertical strip load aligned in x direction

Now p
x
"0, p

y
"0 for all points and p

z
"P

0
/2b when !b)y)b and p

z
"0

at other points. One can show that pN
x
"0, pN

y
"0, pN

z
"2nP

0
(sin cb/cb)d(b), where

d(b) is the Dirac-d function. Substituting them into equation (4) and doing an
inverse Fourier transform, yields

u
10

(x, y)"0,

v
10

(x, y)"!

P
0

2n P
=

~=

Q
23

(0, c)
sin cb

cb
e*cydc,

w
10

(x, y)"!

P
0

2n P
=

~=

Q
33

(0, c)
sin cb

cb
e*cydc, (37)
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which can be written as

u
10

(x, y)"0,

v
10

(x, y)"!

iP
0

n P
=

0

Q
23

(0, c)
sin cb

cb
sin cy dc,

w
10

(x, y)"!

P
0

n P
=

0

Q
33

(0, c)
sin cb

cb
cos cydc. (38)

Equation (37) shows that the displacements are independent of x, the problem is of
plane strain, and the Fourier transformed displacements of the ground surface are

uN
10

(c)"0,

vN
10

(c)"!Q
23

(0, c)
sin cb

cb
P

0
,

wN
10

(c)"!Q
33

(0, c)
sin cb

cb
P
0
. (39)

3. COUPLING OF THE GROUND AND THE RAILWAY

The railway is aligned in the x direction and has a contact width 2b with the
ground. Di!erent railway structures may be represented by di!erent models having
the same form. As an example, a track structure comprising rail, rail pad, sleeper
and ballast is presented. The rails are represented as a single beam and the rail pads
are modelled as a distributed vertical sti!ness (see Figure 1). The sleepers are
modelled as a continuous mass per unit length of the track and the ballast is
modelled as a continuous distributed vertical spring sti!ness and mass.

A harmonic load P
0
e*ut acts on the head of the rails at a point just above the

origin point O. The displacement of the rail in the z direction is denoted by w
1
(x),

that of the sleeper by w
2
(x), and the ballast/ground interface at the track centre line

(i.e., the x-axis) by w
3
(x). The forces between the rail and the sleeper, the sleeper and

the ballast, and at the ballast/ground interface are denoted by F
1
, F

2
and F

3
.

Representing the rails as a single Euler beam, the force balance equation, in the
vertical direction, is

EI
L4w

1
Lx4

#m
R
w~
1
#F

1
"P

0
e*utd (x). (40)

where EI is the bending sti!ness of the rails and m
R

is the mass of the rails per unit
length of the track.

For sleepers, the force balance equation is

m
s
w~

2
!F

1
#F

2
"0, (41)
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where m
s
is the distributed mass of the sleepers per unit length of track; the mass of

the pads is neglected. F
1
"k

P
(w

1
!w

2
), where k

P
is the vertical linear spring

sti!ness of the rail pads per unit length of track.
For the ballast, a vertical linear spring sti!ness is assumed and the e!ects of

inertia are included using the consistent mass approximation. This leads to

m
B

6 C
2
1

1
2D G

w~
2

w~
3
H#k

B C
1

!1
!1
1 DG

w
2

w
3
H#G

!F
2

F
3
H"0, (42)

where m
B

is the mass, and k
B

is the spring sti!ness of the ballast per unit length of
track.

For the ground, only the normal contact force at the interface between the ballast
and the ground is taken into account. This force is assumed to be constant in the
y direction from y"!b to y"b and has a strength per unit length in the
x direction of F

3
(x)e*ut (so, the normal stress in the contact plane is (F

3
(x)/2b) e*ut).

Assembling equations (40)}(42) for the railway, assuming steady state harmonic
solutions of circular frequency u, and Fourier transforming them with respect to x,
leads to

EIb4!u2m
R
#k

P
!k

P
0

!k
P

0

k
P
#k

B
!u2(m

S
#m

B
/3) !(k

B
#u2m

B
/6)

!(k
B
#u2m

B
/6) (k

B
!u2m

B
/3) G

wN
1
(b)

wN
2
(b)

wN
3
(b) H

"G
P
0
0

!FM
3
(b) H . (43)

Hysteretic damping is accounted for in the rail pad and the ballast by de-
riving complex sti!ness properties using a loss factor in each case. The bar
notation is again used to indicate the Fourier-transformed displace-
ments and forces, i.e., wN

1
(b)":=

~=
w
1
(x)e~*bxdx, FM

3
(b)":=

~=
F
3
(x) e~*bxdx.

The minus sign on the right-hand side of the third equation of equation (43)
indicates that the force exerted at the bottom of the track structure by the ground is
upward.

Continuity of the displacement at the ground surface is expressed as

w
3
(x)"w

10
(x, y"0)"

1
4n2 P

=

~=
P

=

~=

wN
10

(b, c)e*bxdb dc (44)

from which

wN
3
(b)"P

=

~=

w
3
(x)e~*bxdx"

1
2n P

=

~=

wN
10

(b, c) dc. (45)
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The following loads are applied at the ground surface (the e*ut term is omitted):

p
x
"0,

p
y
"0,

p
z
"G

F
3
(x)/2b

0,
when Dy D)b,
elsewhere,

(46)

so that

pN
x
"0, pN

y
"0, pN

z
(b, c)"

sin cb
cb

FM
3
(b). (47)

With the substitution of equation (47) into equation (4)

wN
10

(b, c)"!Q
33

(b, c)
sin cb

cb
FM
3
(b) (48)

and by the substitution of equation (47) into equation (45),

wN
3
(b)"A!

1
2n P

=

~=

Q
33

(b, c)
sin cb

cb
dcBFM

3
(b)"HM (b)FM

3
(b). (49)

The integrand in the backeted term, de"ned by this equation as HM (b), is even with
respect to c, so that

HM (b)"!

1
n P

=

0

Q
33

(b, c)
sin cb

cb
dc. (50)

With the substitution of equation (49) into equation (43), wN
1
(b), wN

2
(b), FM

3
(b) can

be obtained, and from equation (4)

uN
10

(b, c)"!Q
13

(b, c)
sin cb

cb
FM

3
(b),

vN
10

(b, c)"!Q
23

(b, c)
sin cb

cb
FM
3
(b),

wN
10

(b, c)"!Q
33

(b, c)
sin cb

cb
FM
3
(b). (51)

The steady state displacements of the ground surface can be found by carrying out
the inverse Fourier transform of equations (51).

4. CALCULATION EXAMPLES

In order to carry out example calculations, parameters for the ground have been
taken from references [4, 7]. Results are presented for two ground models with the



TABLE 1

¹he parameters for the ground

Layer Depth (m) Young's Possion Density Loss P-wave speed S-wave
modulus ratio (kg/m3) factor (m/s) speed

(106N/m2) (m/s)

1 2 or 7 269 0)257 1550 0)1 459 263
Half-
space

2040 0)179 2450 0)1 950 594

TABLE 2

¹he parameters for the railway

Mass of rail beam per unit length of track 120 kg/m
Bending sti!ness of rail beam 1)26]107 N m2
Rail pad sti!ness per unit length of track 3)5]108 N/m2
Rail pad loss factor 0)15
Mass of sleepers per unit length of track 490 kg/m
Mass of ballast per unit length of track 1200 kg/m
Ballast sti!ness per unit length of track 3)15]108 N/m2
Loss factor of ballast 1)0
Contact width of railway and ground 2)7 m

18 X. SHENG E¹ A¸.
same track. The material parameters of the two ground models are given in Table 1.
The "rst ground model has a 7 m layer of soil with a sti!er half-space substratum.
In the second case, the ground has the same material parameters except that the
layer depth is only 2 m. Parameters for a typical railway track that have been used
for both examples are presented in Table 2. The load has a unit amplitude and
a frequency of 40 Hz.

For all the results presented, the inverse Fourier transform has been carried out
using the FFT algorithm. An alternative is to use a numerical integration rule
which takes account of the sine and cosine terms in the Fourier transform as its
weighting functions. An adaptive integration rule based on the quadrature method
of reference [17] has been used and found to be accurate and computationally
e$cient for obtaining results at a single x, y location. However, for the present
purpose of showing the results at a large number of locations on the surface, or for
the purpose of implementing a summation of a large number of terms for vibration
contributions from along the track [8], the fact that an FFT transforms a range of
wave number points to a range of Cartesian co-ordinate locations simultaneously is
advantageous. When using either integration technique, the domain of b, c for
which the calculation is carried out prior to the inverse Fourier transform, must be
chosen taking account of all the possible waves including those of the track
structure. When the FFT is used, care must be taken to ensure that enough points
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are transformed to constitute a su$ciently accurate quadrature. In this example,
the FFT is carried out over a grid of 2048]2048 which covers a range of
!24/m(b, c(24/m. Only 512]512 points of the transform are presented in the
x, y domain in the "gures presented in this paper.

Figure 2 presents the vertical amplitude of displacement of the "rst ground
model (7 m layer) in the wave number domain for a rectangular load 2.7 m]2.7 m.
At this frequency (40 Hz) a number of propagating modes may exist in the layer.
Horizontally polarized shear wave (SH) motion is uncoupled from dilational (P)
and vertically polarized shear wave motion (SV). For this reason, the SH modes
(Love waves) are not relevant to the vertical displacement presented in the "gure.
The peaks in Figure 2 therefore correspond to di!erent orders of P}SVmodes. (The
peak corresponding to the highest wave speed, lowest wave number, represents the
Rayleigh wave in the half-space.) P}SV modes are sometimes referred to as
Rayleigh waves of di!ering order, or &R-waves'. At high frequency, the speed of the
"rst P}SV mode (highest wave number) of a layer approximates to the Rayleigh
wave speed of a half-space of this material. This is indeed the case for the mode
corresponding to the strongest peak at (b2#c2)1@2"1)03 m in Figure 2.

The zero in amplitude for the wave number b or c"2)3 m~1 corresponds to the
zero in the loading function (section 2.4.1) related to the width of the square loading
patch. At this wave number a single wavelength "ts across the width of the loading
patch. The sum excitation of the ground across the loading patch is then zero.

Figure 3 presents the amplitudes of vertical displacement similar to Figure 2 but
for the load applied via the coupled track structure. The zero can still be seen at
Figure 2. The amplitude of transformed vertical displacement of the ground surface: rectangular
load at 40 Hz for the 7 m layer.



Figure 3. The amplitude of transformed vertical displacement of the ground surface: 40 Hz, with
track for the 7 m layer.
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c"2)3 m because of the 2)7 m extent of the track in the y direction. Indeed, the
amplitudes of the waves travelling normal to the track, shown along the c-axis, are
very similar to those of the rectangular load. However, the amplitudes of the waves
along the track, b-axis, are modi"ed by its presence. In Figure 3, the "rst mode of
propagation (i.e., highest wave number) is increased in amplitude from that in-
dicated in Figure 2. With the track present, this peak corresponds to a mode in
which the track acts as a beam on an elastic foundation. The position of the peak is
therefore dependent on the mass and bending sti!ness of the track structure. For
a light track structure of low bending sti!ness, the controlling sti!ness and mass are
those associated with the ground and the track wave number is close to the ground
wave number. In Figure 3, neither the bending sti!ness of the track (only that of the
rail), nor its mass, are large enough to separate the peak for the track wave from
that of the P}SV wave identi"ed in Figure 2. There is therefore a single peak of
greater amplitude in Figure 3. To demonstrate what happens for a more massive
track structure the ballast mass has been increased to 3300 kg/m. In Figure 4,
therefore, the track wave can be seen as the major carrier of vibrational energy in
the x direction, having, a peak distinct from the P}SV mode of the ground at a wave
number of 1)3/m.

Figures 5}7 present, respectively, the vertical, lateral and longitudinal displace-
ments of the ground surface for the load acting via the track (original ballast mass),
as a function of x and y. These "gures all have the same vertical axis scale.

The e!ect of the track is to make both lateral and vertical displacement ampli-
tudes greater along the line of the track than along the normal to it. The e!ects of
a resonance of the track structure can be seen in both vertical and longitudinal



Figure 4. The amplitude of transformed vertical displacement of the ground surface: 40 Hz, heavier
track, 7 m layer.

Figure 5. The amplitude of vertical displacement of the ground surface: 40 Hz, standard track, 7 m
layer.
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components along the x-axis. The vertical displacement amplitude drops quickly
beyond the edge of the track, in the y direction, but less quickly along the track. The
lateral displacement amplitude is greatest near the edge of the track, being zero at
the track centreline because of symmetry. Similarly, the longitudinal component



Figure 6. The amplitude of lateral displacement of the ground surface: 40 Hz, standard track, 7 m
layer.

Figure 7. The amplitude of longitudinal displacement of the ground surface: 40 Hz, standard track,
7 m layer.
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(Figure 7) is zero along the y-axis. Although the vertical load at the track obviously
results in the vertical displacement being dominant near to its point of application,
the transverse-lateral component of vibration becomes similar in amplitude to it
from immediately to the side the track (at about y"2 m) outwards. It can be seen



Figure 8. The amplitude of transformed vertical displacement of the ground surface: 40 Hz,
rectangular load, 2 m layer.
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that the longitudinal}lateral vibration component becomes similar in magnitude to
the vertical component within a similar distance along the track.

Figure 8 presents the amplitude of vertical displacement of the surface of the
ground with the 2 m layer in the wave number domain without the track. Zero
amplitude can be seen at b or c"2)3 m corresponding to the zero in the loading
function related to the contact width as found in Figure 2 for the 7 m layer ground.
In Figure 8, two peaks can be seen corresponding to propagating waves at wave
numbers b or c"0)55 and 0)36 m. Using the calculation method outlined in
reference [5], the peak at 0)55 m has been identi"ed as the Rayleigh wave in the
lower half-space modi"ed by the mass of the layer on top. This also coincides with
the P-wave in the upper layer. The peak at 0.36 m corresponds to the only existing
P}SV mode in the layer.

Figure 9 for the amplitude of vertical response in the wave number domain when
the load acts via a track, shows the in#uence of the track wave. Since the lowest
wave speed of the ground is at b"0)55 m, the track wave appears as an enhance-
ment to the amplitude of this peak and the track wave is controlled by the P-wave
in the layer and the Rayleigh wave in the substratum rather than a high order P}SV
wave in the layer as was the case for the 7 m layer. The comparison of Figures 8 and
9 shows that, for all wave types, propagation along, and also in this case normal to,
the track is increased in amplitude by the presence of the track. This is not the case
for the track on the 7 m layer (Figure 3).

Figure 10 presents the amplitude of vertical displacement on the ground with the
2 m layer. This may be compared with Figure 5 for the ground with the 7 m layer,



Figure 9. The amplitude of transformed vertical displacement of the ground surface: 40 Hz,
standard trace, 2 m layer.

Figure 10. The amplitude of vertical displacement of the ground surface: 40 Hz, standard track, 2 m
layer.
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Figure 11. The amplitude of vertical displacement of the ground surface with the railway track
(higher level on plot) and with the rectangular load (lower level on plot) at 40 Hz for the 2 m layer
ground.
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which is plotted to the same vertical scale. The amplitude at the loading point
beneath the track is greater for the 2 m layer (Figure 10) than for the 7 m layer
(Figure 5). However, a greater rate of attenuation with distance, both along,
and normal to, the track, is shown in the 2 m layer ground. This occurs be-
cause the dominating amplitude at the surface is that of the P-wave in the
layer.

Figure 11 presents the logarithm (base 10) of the vertical amplitude of vibration
as a function of x and y for the rectangular load and for the track load on the same
scale. The lower surface shown in this plot is for the rectangular load. It can been
seen that the overall e!ect of the presence of the track is to increase the amplitude of
vibration from the unit load by a factor of approximately 2 (0)3 on the log scale)
within much of the distance range presented. A stronger e!ect under the track can
be seen along the x-axis.

5. CONCLUSIONS

A method of calculation of the vibrational response of a layered ground subject
to a "xed-position harmonic load acting via a railway track structure, or acting
directly on the ground surface, has been produced. This can be used in the study of
vibration induced dynamically due to the irregular vertical pro"le of the track and
for vibration excited by lower speed vehicles (i.e., speeds well below the wave speeds
in the ground). The method developed here is e$cient and more accurate than
a "nite-element dynamic sti!ness matrix approach that has been used previously
for a similar model and so allows the responses at a large number of points to be
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produced. A model for the e!ects of loads moving at high speeds is intended to be
the subject of a subsequent paper by the present authors.

Example results have been produced for a railway track resting on two di!erent
ground models, the "rst having a 7 m layer on a sti!er half-space substratum and
the second having a 2 m layer on the same substratum. Each model has been
examined at a frequency of 40 Hz and it has been demonstrated that di!erent
regimes of wave propagation occur in the two cases. For the 7 m layer, vibration
may be transmitted via a number of P}SV modes of the layer. A track wave exists
which is associated with the lowest speed P}SV mode. For the 2 m layer the lowest
wave speed occurs at the coincidence of the P-wave in the layer and the Rayleigh
wave in the substratum. The track wave is therefore tied to this wave speed. The
propagation regime of the 2 m layer ground leads to a higher rate of attenuation of
vibration away from the loading point than for the 7 m layer. Both examples show
a strong e!ect of the track structure on the amplitude and directivity of the
vibration propagated, epecially in the "eld close to the track.
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APPENDIX A

When b"0,
Matrix [A]

j0
"(a

kl
) (k, l"1, 2,2, 6; j"1, 2,2, n):

a
12

"1, a
15
"1, a

23
"1, a

26
"1,

a
24

"a
21

, a
34
"!a

31
, a

36
"!a

33
, a

45
"!a

42
,

a
54

"!a
51

, a
56
"!a

53
, a

64
"a

61
, a

66
"a

63
,

a
21

"!ic/k2
j1

, a
31
"!a

j1
/k2

j1
, a

33
"!ic/a

j2
, a

42
"a

j2
k
j
,

a
51

"!2ik
j
a
j1

c/k2
j1

, a
53
"k

j
(c2/a

j2
#a

j2
),

a
61

"!k
j
(k2

j2
#2a2

j2
)/k2

j1
, a

63
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Matrix [A]
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Matrix [R] and [S]:
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